Exercise 16

Prove the statement using the ε, δ definition of a limit and illustrate with a diagram like Figure 9 .

$$
\lim _{x \rightarrow 4}(2 x-5)=3
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-4|<\delta \quad \text { then } \quad|(2 x-5)-3|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-4|$.

$$
\begin{gathered}
|(2 x-5)-3|<\varepsilon \\
|2 x-8|<\varepsilon \\
|2(x-4)|<\varepsilon \\
2|x-4|<\varepsilon \\
|x-4|<\frac{\varepsilon}{2}
\end{gathered}
$$

Choose $\delta=\varepsilon / 2$. Now, assuming that $|x-4|<\delta$,

$$
\begin{aligned}
&|(2 x-5)-3|=|2 x-8| \\
&=|2(x-4)| \\
&=2|x-4| \\
&<2 \delta \\
&=2\left(\frac{\varepsilon}{2}\right) \\
&=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 4}(2 x-5)=3 .
$$

Below is an illustration like Figure 9.

